The thermal data table | Pd=Pe x
(1-ηL) | | Heat sink to ambient
thermal resistance
Rhs-amb(°C/W) | Heat sink to ambient temperature rise Ths-amb(°C) | |------------------------|----|---|---| | | | Polar-4011 | | | Dissipated Power Pd(W) | 5 | 1.70 | 9.5 | | | 10 | 1.60 | 18 | | | 15 | 1.60 | 27 | | | 20 | 1.60 | 36 | | | 25 | 1.54 | 43.5 | | | 30 | 1.48 | 50.5 | | | 35 | 1.44 | 57.5 | - st Please be aware the dissipated power Pd is not the same as the electrical power Pe of a LED module. - *To calculate the dissipated power please use the following formula: $Pd = Pe \times (I \eta L)$. - Pd Dissipated power ; Pe Electrical power ; $\eta L =$ Light effciency of the LED module; - *The aluminum substrate side of the package outer shell is thermally connected to the heat sink via TIM (Thermal interface material). - $\label{thm:mingFarecommends} \mbox{MingFa recommends the use of a high thermal conductive interface between the LED module and the LED cooler.}$ Either thermal grease, A thermal pad or a phase change thermal pad thickness 0.1-0.15mm is recommended. - *Thermal resistance is a heat property and a measurement of a temperature difference by which an object or material resists a heat flow. - Geometric shapes are different, the thermal resistance is different. Formula: $\theta = (Ths Ta)/Pd$ - $\theta\,$ Thermal Resistance [°C/W] ; Ths - Heatsink temperature ; Ta - Ambient temperature ; - *The thermal resistance between the junction section of the light-emitting diode and the aluminum substrate side of the package outer - shell is $R_{\text{junction-case}}$, the thermal resistance of the TIM outside the package is $R_{\text{interface (TIM)}}$ [°C/M], the thermal resistance with the - heat sink is $R_{heatsink-ambient}$ [°C/W], and the ambient temperature is $T_{ambient}$ [°C]. - *Thermal resistances outside the package $R_{\text{interface (TIM)}}$ and $R_{\text{heatsink-ambient}}$ can be integrated - into the thermal resistance $R_{case-ambient}$ at this point. Thus, the following formula is also used: - $T_{junction} = (R_{junction-case} + R_{case-ambient}) \cdot Pd + T_{ambient}$