


The thermal data table

Pd=Pe x (1-ηL)		Heat sink to ambient thermal resistance Rhs-amb(°C/W)	Heat sink to ambient temperature rise Ths-amb(°C)
		Eden-5001E	
Dissipated Power Pd(W)	5	1.34	7.7
	10	1.10	13
	15	1.07	19
	20	1.02	24.3
	25	0.96	29
	30	0.92	33.5
	35	0.89	38

- st Please be aware the dissipated power Pd is not the same as the electrical power Pe of a LED module.
- *To calculate the dissipated power please use the following formula: $Pd = Pe \times (I \eta L)$.
 - Pd Dissipated power ; Pe Electrical power ; $\eta L =$ Light effciency of the LED module;
- *The aluminum substrate side of the package outer shell is thermally connected to the heat sink via TIM (Thermal interface material).
- MingFa recommends the use of a high thermal conductive interface between the LED module and the LED cooler.

 $Either thermal\ grease, A\ thermal\ pad\ or\ a\ phase\ change\ thermal\ pad\ thickness\ 0.\ I-0.\ I\ 5mm\ is\ recommended.$

- *Thermal resistance is a heat property and a measurement of a temperature difference by which an object or material resists a heat flow.
- Geometric shapes are different, the thermal resistance is different. Formula: $\theta = (Ths Ta)/Pd$
- $\theta\,$ Thermal Resistance [°C/W] ; Ths - Heatsink temperature ; Ta - Ambient temperature ;
- *The thermal resistance between the junction section of the light-emitting diode and the aluminum substrate side of the package outer
- shell is $R_{\text{function-case}}$, the thermal resistance of the TIM outside the package is $R_{\text{interface (TIM)}}$ [°C/M], the thermal resistance with the
- heat sink is $R_{heatsink-ambient}$ [°C/W], and the ambient temperature is $T_{ambient}$ [°C].
- *Thermal resistances outside the package $R_{\text{interface}}$ (TIM) and $R_{\text{heatsink-ambient}}$ can be integrated into the thermal resistance $R_{\text{case-ambient}}$ at this point. Thus, the following formula is also used:
- $T_{junction} = (R_{junction\text{-}case} + R_{case\text{-}ambient}) \cdot Pd + T_{ambient}$