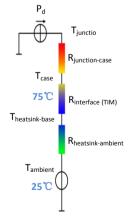


The thermal data table

Pd=Pe x (1-ηL)		Heat sink to ambient thermal resistance Rhs-amb(°C/W)	Heat sink to ambient temperature rise Ths-amb(°C)
		Cube-110	
Dissipated Power Pd(W)	2	3.15	6.7
	5	2.80	15
	10	2.45	26.5
	15	2.40	39
	18	2.30	45
	20	2.25	49
	25	2.12	58

* Please be aware the dissipated power Pd is not the same as the electrical power Pe of a LED module.


*To calculate the dissipated power please use the following formula: $Pd = Pe \times (I - \eta L)$.

Pd - Dissipated power ; Pe - Electrical power ; $\eta L =$ Light effciency of the LED module;

*The aluminum substrate side of the package outer shell is thermally connected to the heat sink via TIM (Thermal interface material).

MingFa recommends the use of a high thermal conductive interface between the LED module and the LED cooler.

 $Either thermal\ grease, A\ thermal\ pad\ or\ a\ phase\ change\ thermal\ pad\ thickness\ 0.\ I-0.\ I\ 5mm\ is\ recommended.$

*Thermal resistance is a heat property and a measurement of a temperature difference by which an object or material resists a heat flow.

Geometric shapes are different, the thermal resistance is different. Formula: $\theta = (Ths - Ta)/Pd$

 $\theta\,$ - Thermal Resistance [°C/W] ; Ths - Heatsink temperature ; Ta - Ambient temperature ;

*The thermal resistance between the junction section of the light-emitting diode and the aluminum substrate side of the package outer

shell is $R_{junction-case}$, the thermal resistance of the TIM outside the package is $R_{interface}$ (TIM) [°C/W], the thermal resistance with the

heat sink is $R_{heatsink-ambient}$ [°C/W], and the ambient temperature is $T_{ambient}$ [°C].

*Thermal resistances outside the package $R_{interface \, (TIM)}$ and $R_{heatsink-ambient}$ can be integrated

into the thermal resistance $R_{\text{case-ambient}}$ at this point. Thus, the following formula is also used:

 $T_{junction} = (R_{junction\text{-}case} + R_{case\text{-}ambient}) \cdot Pd + T_{ambient}$